Section 4.3 and 4.4

Math 231

Hope College

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Coordinate Representations of Vectors

Let B = {x₁,..., x_n} be a finite, ordered basis of a vector space V. Any vector v ∈ V can be written uniquely as

 $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n.$

The vector $[\mathbf{v}]_{\mathcal{B}} = \langle \alpha_1, \dots, \alpha_n \rangle \in \mathbb{R}^n$ is called the **coordinate representation** of **v** with respect to the ordered basis \mathcal{B} .

 If V is an n-dimensional vector space and B is any ordered basis of V, then coordinate representation gives an isomorphism from V to ℝⁿ.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let B = {x₁,..., x_n} be a finite, ordered basis of a vector space V. Any vector v ∈ V can be written uniquely as

 $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n$.

The vector $[\mathbf{v}]_{\mathcal{B}} = \langle \alpha_1, \dots, \alpha_n \rangle \in \mathbb{R}^n$ is called the **coordinate representation** of **v** with respect to the ordered basis \mathcal{B} .

 If V is an n-dimensional vector space and B is any ordered basis of V, then coordinate representation gives an isomorphism from V to ℝⁿ.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Transition Matrices

Let *V* be a finite dimensional vector space. Let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ and $\mathcal{C} = {\mathbf{y}_1, ..., \mathbf{y}_n}$ be bases of *V*. Let $id : V \to V$ be the identity function.

The transition matrix matrix [id]^C_B is the *n* × *n* matrix whose *j*th column is the vector [**x**_{*j*}]_C.

• Theorem 4.26.1: For all $\mathbf{x} \in V$, we have $[\mathrm{id}]^{\mathcal{C}}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$.

• **Theorem 4.26.2:** The matrix $[id]_{\mathcal{B}}^{\mathcal{C}}$ is invertible, and $([id]_{\mathcal{B}}^{\mathcal{C}})^{-1} = [id]_{\mathcal{C}}^{\mathcal{B}}$.

Transition Matrices

Let *V* be a finite dimensional vector space. Let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ and $\mathcal{C} = {\mathbf{y}_1, ..., \mathbf{y}_n}$ be bases of *V*. Let id : $V \to V$ be the identity function.

- The transition matrix matrix [id]^C_B is the *n* × *n* matrix whose *j*th column is the vector [**x**_j]_C.
- Theorem 4.26.1: For all $\mathbf{x} \in V$, we have $[\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$.

• **Theorem 4.26.2:** The matrix $[id]_{\mathcal{B}}^{\mathcal{C}}$ is invertible, and $([id]_{\mathcal{B}}^{\mathcal{C}})^{-1} = [id]_{\mathcal{C}}^{\mathcal{B}}$.

Transition Matrices

Let *V* be a finite dimensional vector space. Let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ and $\mathcal{C} = {\mathbf{y}_1, ..., \mathbf{y}_n}$ be bases of *V*. Let $id : V \to V$ be the identity function.

- The transition matrix matrix [id]^C_B is the *n* × *n* matrix whose *j*th column is the vector [**x**_j]_C.
- Theorem 4.26.1: For all $\mathbf{x} \in V$, we have $[\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$.

• Theorem 4.26.2: The matrix $[id]_{\mathcal{B}}^{\mathcal{C}}$ is invertible, and $([id]_{\mathcal{B}}^{\mathcal{C}})^{-1} = [id]_{\mathcal{C}}^{\mathcal{B}}$.

Matrix Representations of Linear Transformations

Let *V* and *W* be finite dimensional vector spaces. Let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be an ordered basis of *V*, and let $\mathcal{C} = {\mathbf{y}_1, ..., \mathbf{y}_m}$ be an ordered basis of *W*. Let $f : V \to W$ be a linear transformation.

- We define $[f]_{\mathcal{B}}^{\mathcal{C}}$ to be the matrix whose columns are $[f(\mathbf{x}_1)]_{\mathcal{C}}, [f(\mathbf{x}_2)]_{\mathcal{C}}, \dots [f(\mathbf{x}_n)]_{\mathcal{C}}.$
- Theorem 4.33: With the above notation, for all x ∈ V, we have

$$[f]^{\mathcal{C}}_{\mathcal{B}}[\mathbf{X}]_{\mathcal{B}} = [f(\mathbf{X})]_{\mathcal{C}}.$$

Matrix Representations of Linear Transformations

Let *V* and *W* be finite dimensional vector spaces. Let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be an ordered basis of *V*, and let $\mathcal{C} = {\mathbf{y}_1, ..., \mathbf{y}_m}$ be an ordered basis of *W*. Let $f : V \to W$ be a linear transformation.

- We define $[f]_{\mathcal{B}}^{\mathcal{C}}$ to be the matrix whose columns are $[f(\mathbf{x}_1)]_{\mathcal{C}}, [f(\mathbf{x}_2)]_{\mathcal{C}}, \dots [f(\mathbf{x}_n)]_{\mathcal{C}}.$
- Theorem 4.33: With the above notation, for all x ∈ V, we have

Math 231 Section 4.3 and 4.4

・ロト ・四ト ・ヨト ・ヨト ・

Theorem 4.35: Let *V* be a finite dimensional vector space, with ordered bases \mathcal{B} and \mathcal{C} . Let $f : V \to V$ be a linear transformation, and let $P = [\operatorname{id}]_{\mathcal{C}}^{\mathcal{B}}$. Then

$$[f]^{\mathcal{C}}_{\mathcal{C}} = P^{-1}[f]^{\mathcal{B}}_{\mathcal{B}}P.$$

<ロ> <問> <問> < 回> < 回> < □> < □> <

3